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ABSTRACT 
The goal of image fusion is to combine relevant information from two or more source images into one single image 

such that the single image contains as much information from all the source images as possible. There are many image 

fusion methods.  This paper present some of the image fusion techniques for image fusion and propose novel higher 

order singular value decomposition (HOSVD) based image fusion algorithm. Image fusion depends on local 

information of source images, the proposed algorithm picks out informative image patches of source images to 

constitute the fused image by processing the divided subtensors rather than the whole tensor. The sum of absolute 

values of the coefficients (SAVC) from HOSVD of subtensors is employed for activity-level measurement to evaluate 

the quality of the related image patch, and  a novel sigmoid-function-like coefficient-combining scheme is applied to 

construct the fused result.  

 

KEYWORDS: Image fusion, Discrete cosine transform, Discrete wavelet transform, higher order singular value 

decomposition (HOSVD), sigmoid function. 

 

     INTRODUCTION
Fusion can be described as the process of combining two or more different entities to form a new entity. Therefore, 

Image fusion is the process of combining two or more distinct images to form a new single image which will be better 

and more informative than every other input image. With the progress in technology, we can now obtain information 

from images of different sources to produce a new high quality image which also contains spatial and spectral 

information [1]. Thus, Image Fusion can be described as a process that improves the quality of information of a set of 

images. [1]-[5]. Image fusion find application in the area of navigation guidance, object detection and recognition, 

medical diagnosis, satellite imaging for remote sensing, rob vision, military and civilian surveillance, etc. Image fusion 

systems are widely used in surveillance and navigation applications, for both military and domestic purposes [5], for 

example, Due to the limited depth-of-focus of optical lenses in CCD devices, it is often not possible to get an image 

that contains all relevant objects “in focus”.  

 

To achieve all objects “in focus”, a fusion process is required so that we get resultant image with all objects in focus.     

 

Image fusion methods can be broadly classified into two groups - spatial domain fusion and transform domain fusion. 

The fusion methods such as averaging, Brovey method, principal component analysis (PCA) and IHS based methods 

fall under spatial domain approaches. The disadvantage of spatial domain approaches is that they produce spatial 

distortion in the fused image. Spatial distortion can be very well handled by frequency domain approaches on image 

fusion.  

 

Laplacian pyramid [1], , Discrete Wavelet Transform (DWT) [3], Discrete Cosine Transform (DCT) [4] etc., image 

fusion methods comes under transform domain. These methods show a better performance in spatial and spectral 

quality of the fused image compared to other spatial methods of fusion. These transform domain based methods merge 

the transform coefficients using the classical weighted average strategy or the choose-max strategy and then obtain 

the fused result through the inverse transformation of the combined coefficients. A novel HOSVD-based image fusion, 

constructed multiple input images as a tensor and can evaluate the quality of image patches using HOSVD of 
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subtensors. Then, it employed a novel sigmoid-function-like coefficient - combining scheme to obtain the fused result 

[9].     A tensor is a multidimensional array. More formally,  an N-way or Nth-order tensor is an element of the tensor 

product of N vector spaces, each of which has its own coordinate system. Tensor-based information processing 

methods are more suitable for representing high-dimensional data and extracting relevant information than vector- 

and matrix based methods and thus receives lots of attention [6]-[8]. As one of most efficient tensor decomposition 

techniques, higher order singular value decomposition (HOSVD). Motivated by the salient ability of HOSVD to 

represent high-dimensional data and extract features, this paper proposes a novel HOSVD based image fusion 

algorithm [7]. It is worthwhile to highlight several aspects of the proposed transform domain-based approach here. 

 

First , consider two or multiple source images of the same scene and are somewhat similar  i.e. the same physical 

structures in the environment. Fusion algorithms are input dependent . If source images do not have same physical 

structure in environment then  solution is to preprocess the source images. One of the important pre-processing steps 

for the fusion process is image registration. After getting source images with same structure as require by proposed 

algorithm, construct them in to a tensor and employs the HOSVD technique to extract their features simultaneously. 

This paper picks out image patches which contains maximum information of source images to constitute the fused 

image by processing the divided subtensors rather than the whole tensor. 

 

A slice of the core tensor results from HOSVD of subtensors reflects the quality of the related image patch. Unlike 

the conventional activity-level measurements, which apply the absolute value of a single coefficient to evaluate the 

corresponding pixel, paper employs the sum of absolute values of coefficients (SAVC) as the activity-level 

measurement of the related patch. To adapt to different activity-level measurements (approximate or substantially 

different), propose a novel and flexible sigmoid-function-like coefficient-combining scheme, which incorporates the 

usual choose-max scheme and the weighted average scheme [9]. 

 

DISCRETE WAVELET TRANSFORM BASED FUSION 
The discrete wavelets transform (DWT) allows the image decomposition in different kinds of coefficients preserving 

the image information. Such coefficients coming from different images can be appropriately combined to obtain new 

coefficients, so that the information in the original images is collected appropriately. Once the coefficients are merged, 

the final fused image is achieved through the inverse discrete wavelets transform (IDWT), where the information in 

the merged coefficients is also preserved [3].  

 

 
Fig. 1. Block diagrams of generic fusion schemes where the input images have identical [3] 

 

The DWT is applied to both source images and a decomposition of each original image is achieved. The different 

black boxes as shown in fig.1, associated to each decomposition level, are coefficient corresponding to the same image 

spatial representation in each original image, i.e. the same pixel or pixels positions in the original images. Only 

coefficients of the same level and representation are to be fused, so that the fused multiscale coefficients can be 

obtained. This is displayed in the diagonal details where the curved arrows indicate that both coefficients are merged 

to obtain the new fused multiscale coefficient. This is applicable to the remainder coefficient. Once the fused 

multiscale is obtained, through the IDWT, the final fused image is achieved [3]. 

 

DISCRETE COSINE TRANSFORM BASED FUSION 
This paper studies image fusion in the DCT domain, also,  present an image fusion technique based on a contrast 

measure defined in the DCT domain in JPEG framework.  This technic  is faster than the wavelet based image fusion 
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technique when the images to be fused were saved in JPEG format or when the fused image will be saved or 

transmitted in JPEG format. There is no difference in visual quality between the fused image obtained by image fusion 

technique based on a contrast measure defined in the DCT domain and that obtained by the wavelet transform based 

image fusion technique. 

 

In this algorithm first, divides up the original images  into 8 by 8 pixel blocks, and then calculates the discrete cosine 

transform (DCT) of each block. A quantizer rounds off the DCT coefficients according to the quantization matrix. 

Quantization of the DCT coefficients is a lossy process. Then entropy coding is used to encode the quantized 

coefficients and a compression data stream is output. In the decoder, JPEG recovers the quantized DCT coefficients 

from the compressed data stream, takes the inverse DCT transform and displays the image. Here we use different 

fusion techniques to obtain the fused images 

 

The key step is to fuse the DCT representations of multi-images into a single DCT representation of the fused image. 

A contrast sensitivity method is adopted to produce a visually better fused image. This is based on the fact that the 

human visual system is sensitive to local contrast [4]. 

 

MATHEMATICAL BACKGROUND OF HOSVD 
Singular Value Decomposition  

Every matrix 𝐴 ∈ 𝑅𝑚×𝑛 can be written as the factorisation of three matrices U, ∑ and V , where 

𝐴 = 𝑈 ∑  𝑉𝑇 , ∑ = 𝑑𝑖𝑎𝑔(𝜎1 … . . 𝜎𝑝)  ∈ 𝑅𝑚×𝑛 , 𝑝 = min{𝑚, 𝑛}                                                          (1) 

with 𝑈 ∈ 𝑅𝑚×𝑚  and  𝑉 ∈ 𝑅𝑛×𝑛  being orthogonal matrices and 𝜎1 ≥ 𝜎2 ≥∙ … . . ≥ 𝜎𝑝 ≥  0. 

 𝜎1 … . . 𝜎𝑝 are the singular values of A. 

 The columns u1……….um are called left singular vectors of A. 

 The columns v1………. vn are called right singular vectors of A. 

Notice that ∑ is a pseudo diagonal matrix. 

When the SVD of a matrix 𝐴 ∈ 𝑅𝑚×𝑛 is computed, then we can keep only the first 

n rows of ∑ so that we have a diagonal matrix. Of course, U has to be modified 

accordingly. In this case we set 

𝐴𝑟𝑒𝑑 = 𝑈𝑟𝑒𝑑  ∑  𝑟𝑒𝑑𝑉𝑟𝑒𝑑
𝑇  

where 

Ured = U[:, 1 : n],  ∑ red = ∑ (1 : n,  1 : n) 

This trimmed down version of the SVD is called thin SVD [GL96]. The thin SVD will 

be relevant for the chapter about Latent Semantic Analysis, where it is used to detect 

the latent semantics of the stored two-dimensional structure. 

The SVD is related to the eigen-decomposition of 𝐴𝐴𝑇 ∈ 𝑅𝑚×𝑚 and 𝐴𝑇𝐴 ∈ 𝑅𝑛×𝑛, 

since 𝐴𝑇𝐴𝑣𝑖 = 𝜎𝑖
2𝑣𝑖 and 𝐴𝐴𝑇𝑢𝑖 = 𝜎𝑖

2𝑢𝑖  [SA03].  

Some important properties of the SVD are the following: 

 The singular values of a matrix are uniquely determined. 

 𝐴 = 𝑈 ∑ 𝑉𝑇 ≡ 𝐴𝑇 = 𝑈 ∑ 𝑇𝑉𝑇 

 If rank(A) = r, then A has r nonzero singular values 𝜎1 ≥ 𝜎2 ≥∙ … . . ≥ 𝜎𝑟 >  0 

The definitions and properties discussed above extend to complex matrices. 

The SVD has an important role to play in linear algebra, being used for pseudoinverse 

computing, least square problems, computation of the Jordan canonical form or solving 

integral equations, just to mention a few.  

 

Tensor 

Tensor. A tensor (also called multidimensional array or n-way array) is the generalisation of a matrix. A matrix can 

be seen as a two-dimensional tensor, a vector as a one-dimensional tensor. We refer to the di_erent dimensions of a 

given tensor as its modes. 

Example: the third mode of a tensor 𝐴 ∈ 𝑅𝐼×𝐽×𝐾  is of size K. 

Tensor order. The order of a tensor 𝐴 ∈ 𝑅𝐼1×……..×𝐼𝑁   is N. Its elements are denoted as 𝑎𝑖1…..𝑖𝑛….𝑖𝑁
where 1≤ in ≤ In  for 

1≤ n≤ N. 
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Norm of a tensor. The norm of a tensor A is defined by the Frobenius-norm of any of its existing unfoldings. 

         ‖𝐴‖ ≔  ‖𝐴(1)‖
𝐹

= ⋯ =  ‖𝐴(𝑁)‖
𝐹

             (2) 

The Frobenius-norm of a complex matrix 𝐴 ∈ 𝐶𝑚×𝑛  is given by 

           ‖𝐴‖𝐹 ∶= √∑𝑚
𝑖=1 ∑ |𝑎𝑖𝑗|

2𝑛
𝑗=1                   (3) 

Rank of a tensor. The n-rank of A, rankn(A), is the dimension of the vector space 

spanned by the n-mode vectors and the following equation holds: 

                 rankn(A(n)) = rank(A)                           (4) 

Tensor product. The tensor product (denoted by the operator  ) for tensors 𝐴 ∈ 𝑅𝑑1×……..×𝑑𝑁  ,  

𝐵 ∈ 𝑅𝑓1×……..×𝑓𝑀 is defined as: 

         𝑐𝑖1…...,𝑖𝑁,𝑗1…...𝑗𝑀
: =  𝑎𝑖1…...,𝑖𝑁,

𝑏𝑗1…...,𝑗𝑀,
            (5) 

where   

𝐶 = 𝐴 B ∈ 𝑅𝑑1×……..×𝑑𝑁×𝑓1×……..×𝑓𝑀  

       

n-mode product. Let 𝐴 ∈ 𝑅𝐼1×……..×𝐼𝑁 and  𝑀 ∈ 𝑅𝐽𝑛×𝐼𝑛  be given. 

Then 𝐴 ×𝑛  𝑀 ∈ 𝑅∏ 𝐼𝑖× 𝐽𝑛×∏ 𝐼𝑖
𝑁
𝑖=𝑛+1

𝑛−1
𝑖=1  , and we define the new tensor elementwise as 

(𝐴 ×𝑛  𝑀)𝑖1…𝑖𝑛−1𝑗𝑛𝑖𝑛+1…𝑖𝑁 
≔  ∑ 𝑎𝑖𝑛 ….𝐼𝑛  𝑚𝑗𝑛 𝑖𝑛  𝑖𝑛∈𝐼𝑛

 (6) 

The operator ×n is called the n-mode product. 

 

Higher-Order Singular Value Decomposition.  

The Higher-Order Singular Value Decomposition (HO-SVD) of a tensor 𝐴 ∈ 𝑅𝐼1×……..×𝐼𝑁 is defined as 

               𝐴 = 𝑆 ×1  𝑈1 ×2 … … ×𝑁 𝑈𝑁                (7) 

when the following properties hold: 

 The Ui are orthogonal for 𝑖 ∈ {1, … . , 𝑁}. These matrices are composed by the left singular vectors of the 

corresponding matrix-unfoldings of A. 

 The core tensor 𝑆 ∈ 𝑅𝐼1×……..×𝐼𝑁, and all subtensors with fixed index are all- orthogonal, which means 

〈𝑆𝑖𝑛=0, 𝑆𝑖𝑛=0〉 = 0  for all  𝑎, 𝑏 ∈  {1, … , 𝑁} where a≠b. 

 𝑆 ∈ 𝑅𝐼1×……..×𝐼𝑁 , and all subtensors with fixed index are ordered 

(‖𝑆𝑖𝑛=1‖ ≥ ⋯ ≥ ‖𝑆𝑖𝑛=𝐼𝑛
‖ ≥ 0 for all possible values of n). Notice the similar 

properties of S in the HO-SVD and ∑ in the SVD. 

 𝜎𝑛,𝑖 ∶= ‖𝑆𝑖𝑛=1‖ are called n-mode singular values and the vectors𝑢𝑛,𝑖 ∈ 𝑅𝑛  are 

called n-mode singular vectors of A, analogously to the SVD definitions. 

Decompositions of higher-order tensors have useful applications in many different 

fields. The HO-SVD is used in psychometrics, chemometrics, signal processing, compression 

algorithms, numerical linear algebra and analysis, statistics, computer vision, 

OCR, data mining, personalised web-search, neuroscience and graph analysis, just to 

mention a few. 

There is an important link between HO-SVD and SVD : 

"Let 𝐴 = 𝑆 ×1  𝑈1 ×2 … … ×𝑁 𝑈𝑁  a HO-SVD, then the SVD of the n-mode matrix 

unfolding A(n) is: 𝐴(𝑛) = 𝑈𝑛∑𝑛𝑉𝑛
𝑇, with ∑𝑛 = 𝑑𝑖𝑎𝑔(𝜎𝑛,1, … , 𝜎𝑛𝐼𝑛) ∈ 𝑅𝐼𝑛×𝐼𝑛  and, 

𝑉𝑛
𝑇 ∶= (∑ 𝑆𝑛

−1
𝑛 ) ∙ (Un+1 …  UN 𝑈1 …   Un−1) ∙∈ 𝑅𝐼𝑛+1…𝐼1𝐼𝑁…𝐼𝑛−1×𝐼𝑛  

Where   denotes the Kronecker product". 

This means that we can compute the HO-SVD of a n-mode tensor A by computing the SVD of its first n tensor 

unfoldings. In fact, all known methods for computing the HO-SVD of a tensor need the SVD of its unfoldings. The 

complete SVD of the unfoldings is actually not needed, but only the matrices containing the left singular vectors in 

order to compute the approximation of the tensor. 

The Kronecker product of two matrices 𝐵 ∈ 𝑅𝑚×𝑛  and 𝐶 ∈ 𝑅𝑝×𝑞is given by: 

    𝐴 B = (

b11C b12C … b1nC

b21C
⋮

b22C …
⋮ ⋱

b2nC
⋮

bm1C bm2C ⋯ bmnC

) ∈ Rmp×nq 

http://www.ijesrt.com/


[Hatte*, 4.(9): September, 2015]  ISSN: 2277-9655 

 (I2OR), Publication Impact Factor: 3.785 

   

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [199] 
 

Here, we introduce several notations and operations of tensors, which will be used in the rest of this paper (see [8] for 

details).  

1. An Nth order tensor is an object with N indices, i.e.,  𝐴 ∈  𝑅𝐼1 ×𝐼2×………..×𝐼𝑁. 

 

2. An nth – mode vector of an (I1 × I1 × ....× IN)- dimensional tensor  A is an In – dimensional vector obtained by 

varying index in but fixing the indices. 

3. The  nth – mode product of a tensor 𝐴 ∈  𝑅𝐼1 ×𝐼2×………..×𝐼𝑁 and a matrix 𝑈 ∈  𝑅𝐽𝑛 ×𝐼𝑛 along  the nth  mode is denoted 

by  

        

 B = 𝑈 ∈  𝑅𝐼1 ×𝐼2×………..×𝐼𝑛−1×𝐽𝑛×𝐼𝑛+1×…..×𝐼𝑁   with elements 𝑏𝑖1 ,𝑖2×………..×𝑖𝑛−1,𝑗𝑛,𝑖𝑛+1×…..×𝑖𝑁
 =   

 ∑ 𝑎𝑖1 ,𝑖2×………..×𝑖𝑛−1,𝑗𝑛,𝑖𝑛+1×…..×𝑖𝑁
• 𝑢𝑗𝑛,𝑖𝑛

𝐼𝑛
𝑖𝑛=1 , where  𝑢𝑗𝑛,𝑖𝑛

 stands for the (𝑗𝑛,𝑖𝑛)th element of matrix U, and  

𝑎𝑖1 ,𝑖2×………..×𝑖𝑛−1,𝑗𝑛,𝑖𝑛+1×…..×𝑖𝑁
 represents the  (𝑖1 , 𝑖2 × … … … . .× 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 × … . .× 𝑖𝑁)th element of tensor 

A. 

4. The  nth – mode matricization of a tensor A is an operation where the nth – mode vectors of A are aligned as the 

columns of  a matrix which is denoted by A(u). 

5. HOSVD of tensor  𝐴 ∈  𝑅𝐼1 ×𝐼2×………..×𝐼𝑁 is given by A = ∑ ×1 U1 ×2  U2 ……..×N   UN, where ∑  ∈
 𝑅𝐼1 ×𝐼2×………..×𝐼𝑁  is the core tensor that satisfies the  all-orthogonality conditions, and 𝑈𝑛 ∈  𝑅𝐽𝑛 ×𝐼𝑛, 𝑛 =
1,2, … … . . 𝑁, are the left singular vectors of  A(u). 

 

HOSVD BASED FUSION 
Description of  Proposed  Algorithm 

Generally, a transform-domain fusion algorithm consists of the following three steps: 1) obtain the decomposition 

coefficients using some transform; 2) construct the activity-level measurement from these coefficients; and 3) merge 

these coefficients to construct the fused result in line with the measurements above. In the remainder of this section, 

a new image fusion algorithm is developed according to the steps above. HOSVD is one of most efficient data-driven 

decomposition techniques and can extract the features of multiple slices of the decomposed tensor simultaneously. To 

facilitate the description, we begin with two (M × N) - dimensional gray images [9]. 

 

Step 1: Two source images are constructed into a tensor with (M × N× 2) - dimensions (i.e., with three modes: the 

row, the column, and the label of the source image order), and HOSVD is employed to extract the related features 

(i.e., to obtain the decomposition coefficients). Although HOSVD is used to obtain the decomposition coefficients (or 

extract features) of multiple images, there are two important differences. we form (𝑀̌ × 𝑁̌× 2)- dimensional subtensors 

Ai,  using two image patches Bi(1) and Bi(2) separately from the two source images and perform the HOSVD of Ai , 

so that informative image patches are picked out to piece together the final fused image. Use the nth-mode product of 

the core tensor and the third-mode factor matrix to reflect the quality of the related image patch for the purpose of 

constructing the final fused result from the product above more conveniently [8]. 

Step 2: It is commonly thought that the magnitude (absolute value) of the decomposed coefficient is consistent with 

the related local energy, which implies that the larger the absolute value of the coefficient is, the more information the 

corresponding pixel contains. Therefore, many transform domain fusion methods employ the absolute value of the 

coefficient as the activity-level measurement of the corresponding pixel. Borrowing the idea but unlike it, defines the 

SAVC as the activity-level measurement of the related image patch to evaluate its quality [9]. 

Step 3: To derive the coefficient-combining scheme, we first consider all possibilities: 1) In the same subtensor, the 

image patch with an even higher SAVC value contains more rich information or is of higher quality; thus, it should 

be directly selected as the final fused result of the corresponding subtensor (i.e., in this case, the choose-max strategy 

should be applied). 2) If the SAVCs of both image patches are close to each other, then they have approximate image 

quality, and thus, their weighted average should be used as the ultimate fused result of the subtensor (i.e., in this case, 

the weighted average strategy should be employed). 
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Fig. 2. Sigmoid function with different shrink factors [9] 

 

However, for the first case, when two adjacent image patches are chosen, respectively, from different source images, 

it will cause discontinuous gap pixels between adjacent patches of the fused image. Therefore, a choose-max strategy 

with the smoothing function should be designed. In order to attain the aim above, this paper designs a novel sigmoid-

function-like coefficient-combining scheme to adapt to different cases: the first situation is mapped into the flat region 

[marked in Fig.2] of the sigmoid function’s range, and then, the approximate choose-max scheme works. The second 

one is projected into its steep region [marked in Fig.2], and in this case, the weighted average scheme works [9]. 

Thus, the proposed algorithm is summarized here. 

1) Initialization 

Construct two (M × N)-dimensional source images into a tensor with (M × N× 2)-dimensions. To further avoid the 

discontinuous gap above, the consecutive subtensors are enabled to partly share data, i.e., a sliding window technique 

is applied here to divide the tensor into (𝑀̌ × 𝑁̌× 2)-dimensional subtensors with moving step size p , which satisfies 

with p ≤ 𝑀̌ and  p ≤ 𝑁̌. Note that I= fix ((M - 𝑀̌ +1) / p) • fix ((N -𝑁̌ +1 ) / p), where ((M - 𝑀̌ +1) / p) stands for the 

nearest integers (toward zero) of ((M - 𝑀̌ +1) / p). 

2) For i = 1, 2, ….…I, let the HOSVD of divided subtensor   Ai be given by  

             Ai  = Σi  ×1  Ui ×2 Vi  ×3  Wi                                     (8) 

To construct the fused result conveniently, we employ the following tensor: 

         𝛴i = Σi ×3  Wi                                               (9) 

as the features of image patches rather than the original core tensor Σi  Based on𝛴i , each image patch Bi(l), l = 

1,2,…. 𝑁̌,of subtensor Ai  can be represented as 

    Bi(l) = Ui × 𝛴i (:, :. l) •  𝑽𝒊
𝑻  ,  l = 1,2.              (10) 

 To facilitate the description, Bi(l) is lexicographically ordered as vec(Bi(l)) in a vector form, i.e., 

 vec(Bi(l)) = ∑ ∑ 𝛴i (m, n, l)  • 𝑣𝑒𝑐( 𝐮m × 𝑣𝑖
𝑇)  

𝑁̌

𝑛=1

𝑀̌

𝑚=1

 (11) 

where um represents the mth column of Ui  and vn  stands for the nth column of Vi. Since both Ui and Vi are orthogonal 

matrices, vec( um × 𝑣𝑖
𝑇), m = 1,2,….. 𝑀̌ , n = 1,2, ,…. 𝑁̌, , form an orthogonal basis, which implies that element 𝛴i (m, 

n, l) is actually the projection coefficient of vec(Bi(l)) on vec( um × 𝑣𝑖
𝑇) 

Based on coefficient matrix 𝛴i (:, :. l) the activity-level measurement of image patch Bi(l)  is defined as 

   ei  (𝑙) = ∑ ∑ |𝛴i (m, n, l)|
𝑁̌

𝑛=1

𝑀̌

m=1

,   l = 1,2    (12)                             

 which can be represented in another form as 
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     ei  (𝑙) =  ‖𝑣𝑒𝑐(𝛴𝑖(: , ∶. l))‖
l
,   l = 1,2      (13)                               i.e., the activity-level measurement is the p1 norm 

of vector 𝑣𝑒𝑐(𝛴𝑖(: , ∶. l)). 

According to these activity-level measurements ei (l), l = 1, 2, coefficient matrices 𝛴𝑖(: , ∶. 1) and 𝛴𝑖(: , ∶. 2) are merged 

to obtaina new coefficient matrix Di, i.e., 

   Di = 
1

1+exp(−k ln (
ei(1)

ei(2)
))

 × 𝛴𝑖(: , ∶. 1)  +   

               
exp(−k ln (

ei(1)

ei(2)
))

1+exp(−k ln (
ei(1)

ei(2)
))

 ×𝛴𝑖(: , ∶. 2)           (14)                       

Where k is the shrink factor of the sigmoid function. 

 

After Di  is obtained, fused image patch Fi, is determined as follows: 

      Fi = Ui × Di × 𝑉𝑖
𝑇, I = 1, 2, ….I                   (15)                               3) Finally, fused imageis constructed with, Fi, i 

= 1, 2,. .I: a) Initialize G as a zero matrix, i.e.,G = 0M×N ; b) superimposed Fi onto G at its crresponding patch position,  

i = 1, 2, …..I; and c) for each pixel position of G, the added pixel value divided by its adding times is employed as the 

final fused result of this position. 

 

Discussion of the Sigmoid Function  

First, we consider one of two limit cases, i.e. k = + ∞, .If (ei(1) / ei(2)) > 1, then 
1

1 + exp (−k ln (
ei(1)

ei(2)
))

= 1 

exp (−k ln (
ei(1)

ei(2)
))

1 + exp (−k ln (
ei(1)

ei(2)
))

= 0 

Otherwise, If (ei(1) / ei(2)) < 1 if, then 
1

1 + exp (−k ln (
ei(1)

ei(2)
))

= 0 

exp (−k ln (
ei(1)

ei(2)
))

1 + exp (−k ln (
ei(1)

ei(2)
))

= 1 

Obviously, the proposed coefficient-combining strategy reduces into the choose-max strategy. In other words, the 

choose-max scheme is just the special case of the proposed coefficient-combining strategy, i.e.,    

 Fi  =   Ui × Di × 𝑉𝑖
𝑇 

         Ui × 𝛴𝑖(: , ∶. 1) × 𝑉𝑖
𝑇        if ei(1)  >  𝑒i(2)                          =       Ui×( 

1

2
𝛴𝑖(: , ∶. 1) +

1

2
 𝛴𝑖(: , ∶. 2) ) × 𝑉𝑖

𝑇           

            otherwise  

 

         Ui × 𝛴𝑖(: , ∶. 1) × 𝑉𝑖
𝑇       if ei(2)  >  𝑒i(1) 

            

            Bi(1)                                if ei(1)  >  𝑒i(2) 

  =       
1

2
(Bi(1) + Bi(2))            otherwise            (16) 

           Bi(2)                                if ei(2)  >  𝑒i(1)      

                 

Then, we consider another limit case, i.e., k = 0. In this case 
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1

1 + exp (−k ln (
ei(1)

ei(2)
))

=
1

2
 

exp (−k ln (
ei(1)

ei(2)
))

1 + exp (−k ln (
ei(1)

ei(2)
))

   =
1

2
 

Thus, the proposed algorithm is reduced into the average fusion method, i.e. 

       Fi   =   Ui × Di × 𝑉𝑖
𝑇 

             =    Ui ×( 
1

2
𝛴𝑖(: , ∶. 1) +

1

2
 𝛴𝑖(: , ∶. 2) ) × 𝑉𝑖

𝑇 

             =  
1

2
(Bi(1) + Bi(2))                                  (17)                                                      

To facilitate the analyses, we plot the sigmoid function 

1

1 + exp (−k ln (
𝑒(1)

𝑒(2)
))

 

  with different in Figure.4.1, From this figure, several aspects can be observed 

1) As k increases  
1

1 + exp (−k ln (
𝑒(1)

𝑒(2)
))

 

approaches  
1

2
 + 

1

2
 sgn(

𝑒(1)

𝑒(2)
−  1 ) 

 

Where sgn (•) is the sign function. In particular, when k = + ∞  
1

1 + exp (−k ln (
𝑒(1)

𝑒(2)
))

 

is equivalent to 
1

2
 + 

1

2
 sgn(

𝑒(1)

𝑒(2)
−  1 ) 

i.e., the coefficient-combining strategy proposed in reduces into the choose-max scheme. 

        2)  When k = 0, , the proposed algorithm is  

              equivalent to the average fusion method. 

 

3) For the same (e(1) / e(2)): If larger k is applied, the coefficient combining strategy plays the selection role. 

However, if smaller k is applied, the coefficient-combining strategy plays the average or smoothing function. 

4)    The same k : When  e(1) is even larger or   

   smaller thane (2), the coefficient- combining   

   scheme plays the selection role. However,   

   when e(1) is closer to e(2), the coefficient- 

   combining strategy plays the  weighted  

   average role. 

IMAGE QUALITY METRICS 

Performance Evaluation of the Proposed Fusion Algorithm: 

Quality is a characteristic that measures perceived image degradation i.e., in comparison with ideal or perfect image. 

Evaluation forms an essential part in the development of image fusion techniques. It involves Full Reference where 
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quality is measured in comparison with ideal image and No Reference Methods, which have no reference image. Here 

we employ Full reference Methods and no reference method[10]. 

 

Full Reference Methods 

Assumptions made in the following equations are as A is the image which is perfect, B is the resultant image. i, j is 

the pixel row and column index. 

 

Peak Signal to Noise Ratio (PSNR) 

PSNR is the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the 

fidelity of its representation. The PSNR measure is given by[11]:- 

PSNR(db) = 20 𝑙𝑜𝑔
255 √3𝑀𝑁

√∑𝑀
𝑖=1 ∑ (𝐵′(𝑖,𝑗)−𝐵(𝑖,𝑗))2𝑁

𝐽=1

 

Where, B - the perfect image, 𝐵′ - the fused image to be assessed, i – pixel row index, j – Pixel column index, M, N- 

No. of row and column. 

 

Entropy(EN) 

Entropy is an index to evaluate the information quantity contained in an image. If the value of entropy becomes higher 

after fusing, it indicates that the information increases and the fusion performances are improved. 

Entropy is defined as[10]:- 

E = ∑ 𝑝𝑖 log2 𝑝𝑖
𝐿−1
𝑖=0  

 

Where L is the total of grey levels, 𝑝 = {𝑝0, 𝑝1, … . .𝑝𝐿−1 } is the probability distribution of each level . 

 

Root Mean Squared Error(RMSE) 

Root Mean square error is measure of image quality index. Larger value of mean square error means that the image is 

of poor quality. The mathematical equation of RMSE is given as[11]: 

RMSE = √
1

𝑚𝑛
 ∑ ∑ (𝐴𝑖𝑗 − 𝐵𝑖𝑗)2𝑛

𝑗=1
𝑚
𝑖=1  

 

Where, A - the perfect image, B - the fused image to be assessed, i – pixel row index, j – pixel column index, m, n- 

No. of row and column . 

 

No Reference Method 

Fusion performance can be measured by the following fusion quality evaluation metrics’ when we have no reference 

image: 

 

Spatial Frequency(SF): 

Spatial Frequency indicates the overall activity in the fused image. The SF is computed as[10]: 

 

Row Frequency: 

 

RF = √
1

𝑀𝑁
∑ ∑ [𝐼𝑓(𝑥, 𝑦) −  𝐼𝑓(𝑥, 𝑦 − 1)]2𝑁−1

𝑦=1
𝑀−1
𝑥=0  

 

Column Frequency 

 

CF = √
1

𝑀𝑁
∑ ∑ [𝐼𝑓(𝑥, 𝑦) −  𝐼𝑓(𝑥 − 1, 𝑦)]2𝑀−1

𝑥=1
𝑁−1
𝑦=0  

 

Spatial Frequency (SF) = √𝑅𝐹2 +  𝐶𝐹2 

Higher the SF means better performance. 

 

Standard Deviation(SD) 
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Standard Deviation measures the contrast in the fused image. Fused image with high contrast would have high standard 

deviation[10]. 

SD = √
1

𝑀𝑁
∑ ∑ [𝐼𝑓(𝑥, 𝑦) − 𝑈𝐼𝑓]2𝑀−1

𝑥=0
𝑁−1
𝑦=0  

Where the mean is denoted as  

UIf = 
1

𝑀𝑁
∑ ∑ |𝐼𝑓(𝑥, 𝑦)|𝑀−1

𝑥=0
𝑁−1
𝑦=0  

 

RESULT AND DISCUSSION 
The fusion algorithm developed in this paper is evaluated using the images shown in fig 3. The original images are 

shown in fig 3(c)  and (c1) . The images to be fused are shown in fig 3 (a),(b) which is the image of watch and another 

set of image shown in fig 3 (a1), (b1) which is the image of tiger. 

 

 
a. Source image 1            b. source image 2                     c. Original image 

 
d. DCT output                           e. DWT output                         f. HOSVD output 

 
a1.  Source image 1            b1. source image 2                     c1. Original image 

 
d1. DCT output                           e1. DWT output                         f1. HOSVD output 
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Fig.3 Two pairs of source images and their fused result using different algorithms 

 

Table I Comparison of fused result using different metric (source image pair 1) 

 Parameter 

 

Fusion methods 

DCT DWT HOSVD 

RMS Error 109.8018 0.064173 0.051622 

Entropy 7.3567 7.053 7.2939 

correlation coefficient 0.99374 0.991 0.97443 

PSNR 7.3186 71.9837 73.8741 

stddev 49.5248 52.0456 50.0478 

Mf 1.6482e-004 11.9528 8.7017 

 

Table II Comparison of fused result using different metric (source image pair 2) 

Parameter  Fusion methods 

DCT DWT HOSVD 

RMS Error 112.2919 0.098864 0.043194 

Entropy 7.4475 7.2116 7.4531 

correlation coefficient 0.99688 0.99177 0.99214 

PSNR 7.1238 68.2301 75.4224 

stddev 64.6692 36.6748 64.8048 

Mf 3.7443e-004 43.9709 681.3330 

 

These images are out of focus ie. far focused and near focused images of watch and tiger. These images used as source 

images for different fusion algorithms. Also, fig 3 shows the fused result from DCT, DWT, and HOSVD. Result shows 

that all methods gives final fused image clear and more informative. But, we can not judge which method gives better 

result. For this , here employ some quality metrics to identify good one.   

 

These quality metrics which mentioned above are evaluated and listed in Table I , Table II. 

 

From these table, it is shown that the fused result using proposed algorithm are of better entropy(EN), Spatial, standard 

deviation (SD), Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE). From these table , it is proved 

that HOSVD is the best approach for image fusion. The main computational complexity is the multiplications involved 

in the HOSVD of the divided subtensors. The experiment show that the proposed algorithm is an alternative image 

fusion approach. 

 

CONCLUSION 
This paper studies the different image fusion methods and proposes a novel HOSVD based image fusion algorithm. 

The success of the proposed algorithm lies in the following: 1) HOSVD, a fully data-driven technique, is an efficient 

tool for high-dimensional data decomposition and feature extraction; 2) the SAVC is a feasible activity-level 

measurement for evaluating the quality of image patches; and 3) the sigmoid-function-based coefficient-combining 

strategy incorporates the conventional choose-max strategy and the weighted average strategy and thus adapts to 

different activity levels. 
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